ChatGPT zei:
Here is the Einstein–Infeld–Hoffmann (EIH) equation in its standard 1-post-Newtonian (1PN) form for an N-body system.
This is the equation of motion that general relativity gives when expanded to order v2/c2 beyond Newton.
Einstein–Infeld–Hoffmann (EIH) Equations — 1PN Equation of Motion
For body a with mass ma at position xa, velocity va, and acceleration aa,
aa=b=a∑AabN+c21b=a∑Aab1PNNewtonian term
AabN=−Gmbrab3rab,rab=xa−xb.1PN correction term (EIH correction)
Aab1PN=Gmbrab3rab[va2+2vb2−4va⋅vb−23(nab⋅vb)2−4c=a∑racGmc−c=b∑rbcGmc]+rab3Gmb[rab⋅(4va−3vb)](va−vb).where
nab=rabrab.Compact two-body version
(Useful for rotating ellipses, Mercury precession, etc.)
For bodies 1 and 2:
a1=−r2Gm2n+c2r2Gm2[n(v12+2v22−4v1⋅v2−23(n⋅v2)2−rG(m1+m2))+(n⋅(4v1−3v2))(v1−v2)].Body 2’s acceleration is symmetric by swapping labels.
If you want, I can also provide:
✓ The Lagrangian from which the EIH equations follow
✓ The Hamiltonian form (ADM 1PN Hamiltonian)
✓ A simplified version usable for your rotating gravitational ellipse analysis
✓ Explanation how the EIH correction causes perihelion advance (rotation of ellipse)
Would you like any of those?
Je zei:
ChatGPT zei:
Below is a complete, ready-to-run Python script that simulates the Sun + all 8 planets using the Einstein–Infeld–Hoffmann (EIH) 1PN equations of motion.
It is written to be clear, stable, and modifiable for your research on rotating gravitational ellipses.
No external libraries are required except NumPy.
✅ Python Script: Sun + 8 Planets – Newton + EIH (1PN)
python
import numpy as np
# ============================================================
# 1. Physical constants
# ============================================================
G = 6.67430e-11 # gravitational constant
c = 299792458.0 # speed of light
# ============================================================
# 2. Planetary masses (kg) and initial state vectors (m, m/s)
# Values: JPL DE430 / NASA fact sheets, converted to SI.
# Initial date can be J2000 or any epoch you want to insert.
# ============================================================
# Masses
masses = np.array([
1.98847e30, # Sun
3.3011e23, # Mercury
4.8675e24, # Venus
5.97237e24, # Earth
6.4171e23, # Mars
1.8982e27, # Jupiter
5.6834e26, # Saturn
8.6810e25, # Uranus
1.02413e26 # Neptune
])
N = len(masses)
# ------------------------------------------------------------
# Provide your own initial conditions below
# Example placeholder: circular orbits (replace with JPL data!)
# ------------------------------------------------------------
positions = np.zeros((N, 3))
velocities = np.zeros((N, 3))
# Example: very rough circular orbit placeholders (replace!)
AU = 1.496e11
# Sun
positions[0] = [0, 0, 0]
velocities[0] = [0, 0, 0]
# Mercury
positions[1] = [0.387*AU, 0, 0]
velocities[1] = [0, 47.36e3, 0]
# Venus
positions[2] = [0.723*AU, 0, 0]
velocities[2] = [0, 35.02e3, 0]
# Earth
positions[3] = [1.0*AU, 0, 0]
velocities[3] = [0, 29.78e3, 0]
# Mars
positions[4] = [1.524*AU, 0, 0]
velocities[4] = [0, 24.07e3, 0]
# Jupiter
positions[5] = [5.203*AU, 0, 0]
velocities[5] = [0, 13.07e3, 0]
# Saturn
positions[6] = [9.537*AU, 0, 0]
velocities[6] = [0, 9.68e3, 0]
# Uranus
positions[7] = [19.19*AU, 0, 0]
velocities[7] = [0, 6.80e3, 0]
# Neptune
positions[8] = [30.07*AU, 0, 0]
velocities[8] = [0, 5.43e3, 0]
# ============================================================
# 3. EIH acceleration function (Newton + 1PN)
# ============================================================
def compute_accelerations(positions, velocities, masses):
"""
Returns accelerations for all bodies using the 1PN EIH equations.
"""
N = len(masses)
a = np.zeros((N, 3))
# Loop over each pair
for a_i in range(N):
for b_i in range(N):
if a_i == b_i:
continue
r_ab = positions[a_i] - positions[b_i]
v_a = velocities[a_i]
v_b = velocities[b_i]
r = np.linalg.norm(r_ab)
n = r_ab / r
# Newtonian part
A_N = -G * masses[b_i] * r_ab / r**3
# 1PN EIH part
# Terms following the standard EIH expansion
PN1_term1 = (v_a**2 + 2*v_b**2
- 4*np.dot(v_a, v_b)
- 1.5*(np.dot(n, v_b))**2)
# Potential terms
sum_terms_a = 0.0
sum_terms_b = 0.0
for c_i in range(N):
if c_i != a_i:
sum_terms_a += G * masses[c_i] / np.linalg.norm(positions[a_i] - positions[c_i])
if c_i != b_i:
sum_terms_b += G * masses[c_i] / np.linalg.norm(positions[b_i] - positions[c_i])
PN1_potential = -4*sum_terms_a - sum_terms_b
PN_radial = PN1_term1 + PN1_potential
A_1PN = (G * masses[b_i] / (r**2 * c**2)) * (
n * PN_radial +
(np.dot(r_ab, (4*v_a - 3*v_b)) / r) * (v_a - v_b)
)
a[a_i] += A_N + A_1PN
return a
# ============================================================
# 4. Time integration (Velocity Verlet)
# ============================================================
def step_verlet(dt, positions, velocities, masses):
a = compute_accelerations(positions, velocities, masses)
positions_new = positions + velocities*dt + 0.5*a*dt*dt
a_new = compute_accelerations(positions_new, velocities, masses)
velocities_new = velocities + 0.5*(a + a_new)*dt
return positions_new, velocities_new
# ============================================================
# 5. Main simulation loop
# ============================================================
years = 10 # simulate 10 years
dt = 3600 # 1 hour step
steps = int(years*365.25*24*3600 / dt)
for step in range(steps):
positions, velocities = step_verlet(dt, positions, velocities, masses)
if step % 1000 == 0:
print(f"Day {step*dt/86400:.1f}: Earth position = {positions[3]}")
✅ Notes
✔ Replace the placeholder initial conditions
The example uses circular orbits.
For true accuracy, use NASA JPL Horizons Cartesian state vectors (epoch J2000, or any epoch).
I can generate all initial conditions for you automatically, if you want.
✔ The script includes
-
Full N-body Newtonian gravitational forces
-
Complete EIH 1PN corrections
-
Velocity–Verlet integrator
-
Sun + Mercury through Neptune
✔ Adjustable time step
For testing rotating ellipses, use:
-
dt = 1000 s(good) -
dt = 100 s(very accurate) -
dt = 10 s(research-grade precision)
If you want, I can also provide:
✅ Plotting orbits
✅ Energy–angular momentum diagnostic plots
✅ Mercury perihelion precession measurement code
✅ A faster compiled version (Numba)
✅ A symplectic 1PN integrator (better long-term stability)
Would you like any of these additions?
Je zei:
ChatGPT zei:
Below is a complete high-precision Python script for the Sun + all 8 planets using:
✔ mpmath.mpf (arbitrary precision floating-point)
✔ Full Newtonian + EIH (1-post-Newtonian) dynamics
✔ Arbitrary precision set by mp.mp.dps = 80 (you can raise it to 200, 500, 2000, …)
✔ Works without NumPy (pure mpmath)
This script is fully self-contained and meant for your research on rotating gravitational ellipses with high numeric precision.
✅ High-Precision EIH N-Body Simulation (Sun + 8 planets)
Using mpmath.mpf
python
from mpmath import mp
# ============================================================
# 1. Precision settings
# ============================================================
mp.mp.dps = 80 # decimal precision (increase if needed)
mp.mp.trap_complex = True
# ============================================================
# 2. Physical constants (mpf)
# ============================================================
G = mp.mpf('6.67430e-11')
c = mp.mpf('299792458.0')
AU = mp.mpf('1.495978707e11')
# ============================================================
# 3. Masses of Sun + 8 planets (kg)
# ============================================================
masses = [
mp.mpf('1.98847e30'), # Sun
mp.mpf('3.3011e23'), # Mercury
mp.mpf('4.8675e24'), # Venus
mp.mpf('5.97237e24'), # Earth
mp.mpf('6.4171e23'), # Mars
mp.mpf('1.8982e27'), # Jupiter
mp.mpf('5.6834e26'), # Saturn
mp.mpf('8.6810e25'), # Uranus
mp.mpf('1.02413e26') # Neptune
]
N = len(masses)
# ============================================================
# 4. Initial positions and velocities (example circular orbits)
# Replace with JPL Horizons vectors for real accuracy.
# ============================================================
positions = [
mp.matrix([mp.mpf('0'), mp.mpf('0'), mp.mpf('0')]), # Sun
mp.matrix([0.387*AU, 0, 0]), # Mercury
mp.matrix([0.723*AU, 0, 0]), # Venus
mp.matrix([1.0*AU, 0, 0]), # Earth
mp.matrix([1.524*AU, 0, 0]), # Mars
mp.matrix([5.203*AU, 0, 0]), # Jupiter
mp.matrix([9.537*AU, 0, 0]), # Saturn
mp.matrix([19.19*AU, 0, 0]), # Uranus
mp.matrix([30.07*AU, 0, 0]) # Neptune
]
velocities = [
mp.matrix([0, 0, 0]), # Sun
mp.matrix([0, 47360, 0]), # Mercury
mp.matrix([0, 35020, 0]), # Venus
mp.matrix([0, 29780, 0]), # Earth
mp.matrix([0, 24070, 0]), # Mars
mp.matrix([0, 13070, 0]), # Jupiter
mp.matrix([0, 9680, 0]), # Saturn
mp.matrix([0, 6800, 0]), # Uranus
mp.matrix([0, 5430, 0]) # Neptune
]
# ============================================================
# 5. Helper functions
# ============================================================
def norm(v):
return mp.sqrt(v[0]**2 + v[1]**2 + v[2]**2)
# ============================================================
# 6. EIH acceleration (mpmath version)
# ============================================================
def eih_accelerations(pos, vel, masses):
N = len(masses)
a = [mp.matrix([0,0,0]) for _ in range(N)]
for i in range(N):
for j in range(N):
if i == j:
continue
r_ij = pos[i] - pos[j]
v_i = vel[i]
v_j = vel[j]
r = norm(r_ij)
n = r_ij / r
# Newton part
A_N = -G * masses[j] * r_ij / r**3
# 1PN velocity-dependent term
PN1_term1 = (norm(v_i)**2
+ 2*norm(v_j)**2
- 4*(v_i[0]*v_j[0] + v_i[1]*v_j[1] + v_i[2]*v_j[2])
- mp.mpf('1.5') * (n[0]*v_j[0] + n[1]*v_j[1] + n[2]*v_j[2])**2)
# Potential terms
sum_a = mp.mpf('0')
sum_b = mp.mpf('0')
for k in range(N):
if k != i:
sum_a += G * masses[k] / norm(pos[i] - pos[k])
if k != j:
sum_b += G * masses[k] / norm(pos[j] - pos[k])
PN_potential = -4*sum_a - sum_b
PN_radial = PN1_term1 + PN_potential
dot_r_v = (r_ij[0]*(4*v_i[0] - 3*v_j[0]) +
r_ij[1]*(4*v_i[1] - 3*v_j[1]) +
r_ij[2]*(4*v_i[2] - 3*v_j[2]))
A_1PN = (G * masses[j] / (r**2 * c**2)) * (
n * PN_radial + (dot_r_v / r) * (v_i - v_j)
)
a[i] += A_N + A_1PN
return a
# ============================================================
# 7. Velocity-Verlet integrator for mpf
# ============================================================
def verlet_step(dt, pos, vel, masses):
a = eih_accelerations(pos, vel, masses)
# x(t+dt)
pos_new = [pos[i] + vel[i]*dt + mp.mpf('0.5')*a[i]*(dt*dt) for i in range(N)]
# a(t+dt)
a_new = eih_accelerations(pos_new, vel, masses)
# v(t+dt)
vel_new = [vel[i] + mp.mpf('0.5')*(a[i] + a_new[i])*dt for i in range(N)]
return pos_new, vel_new
# ============================================================
# 8. Main simulation loop
# ============================================================
years = 5
dt = mp.mpf('3600') # 1 hour
steps = int(mp.mpf(str(365.25*24))*years)
for step in range(steps):
positions, velocities = verlet_step(dt, positions, velocities, masses)
if step % 500 == 0:
print("Day:", step/24,
"Earth x:", positions[3][0])
✅ Features of this version
✔ Uses mpmath.mpf, not floats
All arithmetic (including EIH terms) is arbitrary precision.
✔ You may increase precision easily
python
mp.mp.dps = 200
✔ Works even for extremely small time steps
You can go down to:
python
dt = mp.mpf('0.1')
✔ Suitable for:
-
perihelion advance calculations
-
your rotating gravitational ellipse investigation
-
sensitivity to third-order space–time relation corrections
-
detecting numerical resonance instabilities
⚠️ Important
The placeholder initial positions/velocities are not realistic.
I can generate JPL Horizons high-precision vectors for epoch J2000 or any epoch.
Do you want
(A) JPL initial conditions in mpmath format, or
(B) a version that computes them automatically?
Je zei:
ChatGPT zei:
Below is the Einstein–Infeld–Hoffmann (1PN) second-order ODE for Mercury under the gravitational influence of the Sun only (other planets neglected).
I give (A) the two-body compact EIH vector equation (Sun + Mercury), and then (B) the simplified form used when the Sun is taken as the central mass at rest (the usual practical form for Mercury).
Notation
-
r=rM−r⊙ : vector from Sun to Mercury.
-
r=∥r∥.
-
v=r˙=vM−v⊙.
-
m : Mercury mass, M : Sun mass.
-
G : gravitational constant, c : speed of light.
-
Overdot ˙ denotes time derivative.
A. Two-body compact EIH acceleration (vector form)
The 1PN EIH acceleration of Mercury (body 1) due to the Sun (body 2) is
r¨M=−r3GMr+c2r2GM[n(vM2+2v⊙2−4vM⋅v⊙−23(n⋅v⊙)2−rG(m+M))+(n⋅(4vM−3v⊙))(vM−v⊙)],where n=r/r.
(That is the compact two-body form — keeps both velocities vM,v⊙.)
B. Simplified 1PN ODE in the Sun-rest (central) frame
If you take the Sun as essentially at rest (v⊙=0) and treat Mercury’s relative vector r,v, the equation simplifies to the commonly used 1PN (Schwarzschild) correction form:
r¨=−r3GMr+c2r3GM[r(v2−rGM)+4(r⋅v)v].Equivalently, writing the post-Newtonian term divided out explicitly:
r¨=−r3GMr+c2r3GM(rv2−rGMr+4(r⋅v)v).Assumptions & comments
-
(B) assumes the Sun’s motion is negligible in the chosen frame (good approximation for Mercury if you place origin at the Sun or use a Sun-centric coordinate).
-
If you prefer to keep the Sun’s finite recoil velocity / Mercury mass effects, use the full two-body form in (A).
-
The ODE above is a second-order vector differential equation for r(t). Integrate it (numerically) to get Mercury’s trajectory including 1PN relativistic corrections (e.g. perihelion advance).
If you want, I can also:
-
expand this into radial+angular scalar equations in polar coordinates (r,θ), or
-
show the explicit extra term that gives the classical perihelion precession rate for small eccentricity. Which would you prefer?
Je zei:
ChatGPT zei:
Short answer: Not identically — but they are equivalent under the usual test-particle / nearly-circular assumptions.
Explanation (concise derivation and assumptions):
We start from the Sun-rest 1PN vector equation I gave earlier
r¨=−r3GMr+c2r3GM(rv2−rGMr+4(r⋅v)v),with v2=r˙2+r2θ˙2 and specific angular momentum per unit mass
L=r2θ˙.Take the radial component (dot with r^). The Newtonian part gives −GM/r2+L2/r3. The 1PN radial contribution is
c2r3GM(rv2−GM+4r(r˙)2)=c2r2GM(v2+4r˙2−rGM).Substitute v2=r˙2+L2/r2 to obtain
r¨=−r2GM+r3L2+c2r2GM(5r˙2+r2L2−rGM).This is the full radial ODE obtained from the 1PN Sun-rest vector form.
Now compare with the scalar equation you wrote:
r¨=−r2GM+r3L2−c2r43GML2.You can see the difference: the full 1PN radial ODE contains terms proportional to r˙2 and a +(GM/c2r4)L2 contribution, while your compact form replaces those velocity-dependent pieces by a single −3GML2/(c2r4) term.
When do they agree?
-
If you treat Mercury as a test particle (Mercury mass ≪ M) and work in the Sun-rest frame — and
-
If radial velocity is negligible (i.e. r˙≈0, appropriate for a circular or nearly circular orbit), then
5\dot r^{2}\approx 0,
]
and the 1PN correction term in the boxed equation reduces to
For weak fields and dropping the rGM term relative to the L2/r2 term (or in the standard quasi-Keplerian manipulation one finds the dominant effective relativistic correction can be written as −3GML2/(c2r4)), so the compact form you wrote is the standard useful approximation for perihelion precession calculations of nearly circular orbits.
In short:
-
General case (arbitrary eccentricity, nonzero r˙): use the full radial ODE with the r˙2 terms (the boxed equation above).
-
Nearly circular / test-particle approximation: your simpler scalar form
r¨=−GM/r2+L2/r3−3GML2/(c2r4)
is the standard, commonly used reduced form and yields the familiar perihelion precession result.
If you want, I can:
-
show the short algebra that converts the full radial ODE into the −3GML2/(c2r4) form under the circular/averaging approximations, or
-
derive the perihelion advance per orbit from your compact equation. Which would you like?